NOX Inhibitors - A Promising Avenue for Ischemic Stroke

نویسندگان

  • Jong Youl Kim
  • Joohyun Park
  • Jong Eun Lee
  • Midori A. Yenari
چکیده

NADPH-oxidase (NOX) mediated superoxide originally found on leukocytes, but now recognized in several types of cells in the brain. It has been shown to play an important role in the progression of stroke and related cerebrovascular disease. NOX is a multisubunit complex consisting of 2 membrane-associated and 4 cytosolic subunits. NOX activation occurs when cytosolic subunits translocate to the membrane, leading to transport electrons to oxygen, thus producing superoxide. Superoxide produced by NOX is thought to function in long-term potentiation and intercellular signaling, but excessive production is damaging and has been implicated to play an important role in the progression of ischemic brain. Thus, inhibition of NOX activity may prove to be a promising treatment for ischemic brain as well as an adjunctive agent to prevent its secondary complications. There is mounting evidence that NOX inhibition in the ischemic brain is neuroprotective, and targeting NOX in circulating immune cells will also improve outcome. This review will focus on therapeutic effects of NOX assembly inhibitors in brain ischemia and stroke. However, the lack of specificity and toxicities of existing inhibitors are clear hurdles that will need to be overcome before this class of compounds could be translated clinically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2.

SIGNIFICANCE Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. RECENT ADVANCES Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. Howev...

متن کامل

NADPH Oxidase: A Potential Target for Treatment of Stroke

Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several r...

متن کامل

Long-term exposure to air pollution and hospital admissions for ischemic stroke. A register-based case-control study using modelled NOx as exposure proxy

BACKGROUND Long-term exposure to air pollution is a hypothesized risk factor for ischemic stroke. In a large case-control study with a complete study base, we investigated whether hospital admissions for ischemic stroke were associated with residential concentrations of outdoor NOx, as a proxy for exposure to air pollution, in the region of Scania, Southern Sweden. METHODS We used a two-phase...

متن کامل

NADPH Oxidase-Related Pathophysiology in Experimental Models of Stroke

Several experimental studies have indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) exert detrimental effects on ischemic brain tissue; Nox-knockout mice generally exhibit resistance to damage due to experimental stroke following middle cerebral artery occlusion (MCAO). Furthermore, our previous MCAO study indicated that infarct size and blood-brain barrier break...

متن کامل

NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease

Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2017